
Deep Reinforcement Learning for Autonomous RC
Car Navigation in Dynamic Environments

Ali Bolat
TED University

Email: ali.bolat@tedu.edu.tr

Abstract—This research investigates the application of deep
reinforcement learning (DRL) in enabling autonomous RC car
navigation within dynamic environments, specifically focusing
on scenarios without predefined paths. Utilizing MetaDrive as
the primary simulation platform, this study designs, tests, and
benchmarks DRL algorithms, including deep Q-Network (DQN),
double deep Q-Network (DDQN), and Proximal Policy Optimiza-
tion (PPO). The evaluation emphasizes comparative performance
analysis in terms of learning efficiency, adaptability to dynamic
conditions, and overall navigation success. The key components of
this work include reward shaping to optimize training processes.
The findings highlight the relative strengths and weaknesses of
each algorithm in navigating complex and dynamic scenarios,
providing information on their potential applications.

I. INTRODUCTION

Autonomous navigation in dynamic environments repre-
sents one of the most significant challenges in the field of
robotics, demanding robust decision-making systems capable
of handling uncertainties and variability. Among the emerging
methodologies, deep reinforcement learning (DRL) stands
out as a promising approach due to its capacity to enable
agents to learn optimal control policies through trial-and-error
interactions with their environment. Unlike traditional rule-
based or heuristic navigation methods, DRL offers a flexible
framework for addressing complex tasks, including obstacle
avoidance, adaptive speed control, and efficient route planning.

This research focuses on the development, benchmarking
and comparison of DRL algorithms for autonomous navigation
of a scaled-down robotic vehicle, specifically an RC car. The
study employs MetaDrive as the primary simulation platform
to design and evaluate DRL algorithms, including the deep
Q-Network (DQN), the double deep Q-Network (DDQN)
and Proximal Policy Optimization (PPO). By analyzing the
performance of these algorithms, the research highlights their
relative strengths and weaknesses in addressing the challenges
of navigating dynamic, unstructured environments.

Key aspects of the study include refining reward functions
to accelerate learning, integrating sensor data to enhance
situational awareness, and assessing the algorithms’ adaptabil-
ity to changing environmental conditions. This study centers
on the comparative analysis of algorithmic performance in
a simulated environment, providing a solid foundation for
future research and development. The insights gained from
these evaluations are intended to guide the selection and
optimization of DRL algorithms for real-world applications,

contributing to advancements in autonomous navigation tech-
nologies.

II. PREVIOUS WORK

Recent advancements in deep reinforcement learning (DRL)
have shown significant potential for autonomous navigation.
Building upon foundational studies, we consider the following
relevant works:

• Model-free Deep Reinforcement Learning for Urban
Autonomous Driving: Chen et al. [1] introduced a
framework that employs model-free DRL in complex
urban driving scenarios. By designing specific input rep-
resentations and utilizing visual encoding, their approach
captures low-dimensional latent states, enabling effective
navigation in challenging environments such as round-
abouts with dense traffic.

• MetaDrive: Composing Diverse Driving Scenarios for
Generalizable Reinforcement Learning: Li et al. [2]
developed MetaDrive, a driving simulation platform de-
signed to support research in generalizable reinforcement
learning algorithms for autonomous driving. MetaDrive’s
compositional nature allows for the generation of an
infinite number of diverse driving scenarios through pro-
cedural generation and real data importing. This platform
facilitates the benchmarking of DRL algorithms across
various tasks, including generalizability to unseen scenes,
safe exploration, and multi-agent traffic learning.

• High-speed Autonomous Drifting with Deep Rein-
forcement Learning: [4] Researchers developed a DRL-
based system enabling autonomous vehicles to perform
high-speed drifting maneuvers. By focusing on precise
control and stability during extreme driving conditions,
this work contributes to understanding the application of
DRL in high-performance driving tasks.

• FastRLAP: A System for Learning High-Speed Driv-
ing via Deep RL and Autonomous Practicing: Sta-
chowicz et al. [3] presented a system that allows an
autonomous small-scale RC car to learn aggressive driv-
ing from scratch through deep reinforcement learning
and autonomous practicing. Their approach emphasizes
the importance of high-speed driving and the ability to
handle complex maneuvers, providing insights into the
scalability of DRL solutions for dynamic environments.



III. METHODOLOGY

In this study, we evaluate and compare three deep reinforce-
ment learning (DRL) algorithms—Deep Q-Network (DQN),
Double Deep Q-Network (DDQN), and Proximal Policy Op-
timization (PPO)—for autonomous RC car navigation. The
primary objective is to benchmark these algorithms in a simu-
lation environment and assess their performance in navigating
an RC car along a predetermined path with minimal deviation.
This section details the experimental setup, the design of the
learning environment, the specific implementations of the DRL
algorithms, and the evaluation metrics used.

A. Simulation Environment

We employ MetaDrive, a high-fidelity simulation platform,
for testing the performance of the DRL algorithms. MetaDrive
offers a flexible and customizable environment for autonomous
driving tasks, including various track layouts and obstacle
types. The environment models the dynamics of an RC car
navigating through a road network while considering environ-
mental factors such as road curvature, speed limits, and traffic.

The state space of the environment is defined by the
following variables:

• Position and orientation: The position and orientation
of the car on the track, represented as a 2D vector of
Cartesian coordinates and angular displacement.

• Velocity: The linear and angular velocities of the car,
which influence the car’s motion dynamics.

• Proximity to obstacles: Distance measurements to
nearby obstacles, such as barriers or other cars, which
are used to avoid collisions.

• Lane information: The car’s distance from the center of
the lane, which is used to ensure it stays within bounds
during navigation.

The action space consists of discrete or continuous control
commands that include steering, acceleration, and braking,
depending on the selected algorithm. For the purpose of this
study, we discretize the control space for DQN and DDQN
and use continuous control for PPO.

B. Deep Reinforcement Learning Algorithms

Three DRL algorithms—DQN, DDQN, and PPO—are im-
plemented and evaluated in this study.

1) DQN (Deep Q-Network): DQN is a model-free re-
inforcement learning algorithm that uses a neural network
to approximate the Q-value function. The Q-value function,
Q(s, a), estimates the expected cumulative reward for a given
state-action pair. In this approach, the network learns to predict
Q-values for all possible actions given a state. The policy is
derived from the action that maximizes the Q-value at each
state:

πθ(s) = argmax
a

Qθ(s, a) (1)

The learning process involves minimizing the loss function
between the predicted Q-values and the target Q-values, cal-
culated using the Bellman equation:

y = r + γmax
a′

Qθ−(s′, a′) (2)

Fig. 1. DQN and DDQN scheme

Fig. 2. PPO Scheme

where r is the immediate reward, γ is the discount factor, and
θ− is the parameters of the target network, which is updated
periodically.

2) DDQN (Double Deep Q-Network): DDQN extends
DQN by addressing the overestimation bias of Q-values. In
DDQN, the main Q-network is used to select actions, and
a separate target Q-network is used to evaluate the selected
actions:

y = r + γQθ−(s′, argmax
a′

Qθ(s
′, a′)) (3)

This decoupling of action selection and evaluation helps
reduce the overestimation bias, improving learning stability,
especially in environments with large action spaces.

3) PPO (Proximal Policy Optimization): PPO is a policy
gradient method that directly optimizes the policy by maximiz-
ing a surrogate objective function. The objective is to improve
the policy iteratively while preventing excessive updates that
could destabilize the learning process. The PPO objective is
formulated as:

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(4)

where rt(θ) is the probability ratio between the new and old
policies, Ât is the advantage estimate, and ϵ is the clipping pa-
rameter. This clipping mechanism ensures that policy updates
are constrained within a safe range, promoting both stability
and exploration.

C. Training Procedure

The training process for all three algorithms follows a
standard procedure:

• Initialization: For DQN and DDQN, the neural networks
are initialized with random weights. For PPO, a policy



network and a value network are initialized. The experi-
ence replay buffer is also initialized for DQN and DDQN.

• Exploration and Exploitation: The agent begins by ex-
ploring the environment using an ϵ-greedy policy, where
the probability of selecting a random action (exploration)
decreases over time to allow for more exploitation of
learned policies.

• Learning: The agent interacts with the environment,
collecting state, action, reward, and next state tuples.
For DQN and DDQN, these tuples are stored in the
experience replay buffer and used to update the Q-
network. For PPO, the advantage estimates and the policy
gradients are used to update the policy network.

• Target Network Update (DQN and DDQN): The target
network in DQN and DDQN is updated periodically to
stabilize training. This helps prevent the target Q-values
from becoming too correlated with the current Q-network.

• Epochs and Timesteps: The training process is divided
into epochs, each consisting of multiple timesteps where
the agent interacts with the environment. The total num-
ber of epochs is fixed, and the number of timesteps
per epoch is adjusted based on the complexity of the
environment.

D. Evaluation Metrics

To evaluate the performance of the algorithms, we use the
following metrics:

• Cumulative Reward: The total reward accumulated over
the course of the episode, used as a measure of the agent’s
overall performance in the environment.

• Success Rate: The percentage of episodes in which the
agent successfully completes the task, such as navigating
the entire track without collisions.

• Time to Completion: The time it takes for the agent
to navigate the track, which provides insight into the
efficiency of the learned policy.

• Power Consumption: The percentec of the gpu was
saved while algorithms runing and created a metric.

The results from each algorithm are compared in terms of
these metrics to determine which algorithm performs best in
terms of stability, efficiency, and accuracy of navigation.

E. Hardware and Software Implementation

The experiments are run on a machine with the following
specifications: NVDIA RTX 3050 TI mobile 90w version,
dualband 8gb 3200mhz ddr4 ram, AMD Ryzen 5600h .
The algorithms are implemented using TensorFlow, PyTorch,
Numpy, and the environment is run using MetaDrive. Hyper-
parameters such as learning rate, TRAIN EPOHCS, GAMMA,
set lr, TAU rates are tuned based on preliminary experiments
to ensure optimal performance for each algorithm.

F. Parameter Tuning

For each DRL algorithm, the hyperparameters were tuned
using optuna framework to find the best configuration for the
task at hand. Common hyperparameters include:

• Learning Rate: Determines the step size at each iteration
while moving towards a minimum of the loss function.

• Discount Factor (γ): Controls the importance of future
rewards in the Q-value or policy updates.

• Batch Size: The number of samples used in each update
step.

• Clipping Parameter (ϵ for PPO): The range within
which the policy updates are clipped.

The best set of hyperparameters was selected based on the
cumulative reward and stability during training.

IV. RESULTS

A. Performance Metrics

Our experimental evaluation revealed distinct performance
characteristics across the three implemented algorithms (DQN,
DDQN, and PPO). The performance analysis encompasses
multiple metrics:

1) Learning Rate Comparison: The average learning rates
demonstrated significant variations among algorithms:

• DQN: 47.72 (average returns per episode)
• DDQN: 46.77 (average returns per episode)
• PPO: 2669.03 (total reward per episode)
PPO exhibited substantially higher learning rates, indicating

more efficient policy optimization in the early training phases.

2) Power Consumption Analysis: Power utilization metrics
revealed:

• DQN: 29.11 units
• DDQN: 26.57 units
• PPO: 41.21 units

DDQN demonstrated the most efficient power utilization,
while PPO showed higher computational demands.

B. Algorithm-Specific Performance

1) DQN Performance: Based on the metrics shown in
Figure 5, the DQN implementation showed:

• Stable learning progression with gradual improvement
in Average Returns, starting from approximately 25 and
reaching 47.72 by the end of training

• Q-Network Loss fluctuations visible in the training curve,
indicating the learning process dynamics

• Power consumption averaging 29.11 units, as shown in
Figure 4

2) DDQN Performance: Analysis of Figure 6 demonstrates
that DDQN achieved:

• More stable Average Returns progression compared to
DQN, reaching 46.77

• Lowest power consumption at 26.57 units (Table II)
• Consistent performance improvement across training

episodes with lower variance in returns



3) PPO Performance: As evidenced by Figures 7 and 8,
PPO exhibited:

• Rapid initial learning phase with Total Reward reaching
peaks of over 2600

• Highest learning rate at 2669.03 (as shown in Figure 3)
• Higher but consistent power consumption at 41.21 units

(Figure 4)

V. DISCUSSION

The comparative analysis of DQN, DDQN, and PPO al-
gorithms for autonomous RC car navigation reveals several
significant insights regarding their performance characteris-
tics, computational efficiency, and practical implications. Our
findings demonstrate distinct patterns in learning behavior,
convergence rates, and overall effectiveness across different
metrics.

A. Learning Performance Analysis

The learning curves of the three algorithms exhibit notably
different characteristics. DQN shows relatively stable learning
progression with an average return trend that gradually im-
proves over the training steps. However, the standard deviation
in returns (as evidenced by the Std Returns metric) indi-
cates considerable variability in performance, suggesting that
DQN’s exploration-exploitation balance might require further
optimization. DDQN demonstrates more consistent perfor-
mance improvements compared to standard DQN, particularly
in terms of stability. This aligns with theoretical expectations,
as DDQN’s double Q-learning mechanism helps mitigate the
overestimation bias inherent in traditional DQN. The median
returns for DDQN show less variance compared to DQN,
indicating more reliable policy learning. PPO exhibits the most
rapid initial learning rate among the three algorithms, with
total rewards showing sharp improvements in early episodes.
This faster convergence can be attributed to PPO’s policy
optimization approach, which allows for more direct policy
updates while maintaining stability through its clipping mech-
anism.

Algorithm Average Learning Rate
DQN 47.71974556552047

DDQN 46.76518533856146
PPO 2669.033642506749

TABLE I
COMPARISON OF AVERAGE LEARNING RATES

B. Power Usage

The power consumption of the algorithms during training
was measured based on CPU usage. The average power
consumption for each algorithm is as follows:

As seen in these results, PPO consumes the most power
compared to DQN and DDQN. This increased power usage
can be attributed to the additional computational complexity
involved in optimizing the policy using the clipped objective
function, which requires more frequent updates. On the other

Fig. 3. Return Graph

TABLE II
AVERAGE POWER CONSUMPTION OF THE ALGORITHMS

Algorithm Average Power Consumption
DQN 29.11

DDQN 26.57
PPO 41.21

hand, DQN and DDQN demonstrate relatively lower power
consumption, with DDQN being the most power-efficient of
the three.

The power consumption data is further illustrated in Fig-
ure 4, which shows the power usage across different algo-
rithms.

C. Convergence Characteristics

• DQN: Shows gradual improvement with notable
fluctuations in Q-Network loss, characterized by
oscillations in the value function approximation.
These fluctuations can be attributed to the inherent
bootstrapping nature of temporal difference learning and
the continuous updating of target values.

Fig. 4. Power Usage of the algorithms calculated by CPU usage



Fig. 5. DQN Algorithm metrics

Fig. 6. DDQN Algorithm Metric

• DDQN: Demonstrates more stable convergence with
lower variance in returns, exhibiting enhanced stability
through its double estimation mechanism. The decoupling
of action selection and value estimation contributes to
reduced overestimation bias and more consistent policy
improvements.

• PPO: Exhibits rapid initial learning followed by
more gradual improvements, demonstrating efficient
policy optimization through its trust region constraint
mechanism and clipped surrogate objective function.

D. Training Efficiency

• The epsilon-greedy exploration strategy in DQN exhibits
systematic improvement in the exploration-exploitation
trade-off, with the decay schedule facilitating initial
environmental exploration followed by increasingly
exploitative behavior. The temporal progression
of epsilon values correlates with enhanced policy
performance, suggesting effective exploration strategy.

• DDQN’s training duration metrics indicate superior
sample efficiency, with accelerated learning per episode
compared to standard DQN. This enhancement can be
attributed to the algorithm’s dual network architecture
and improved value estimation methodology, resulting

Fig. 7. PPO Algorithm Metrics

Fig. 8. PPO Algorithm Return metric by Epoch

in more efficient policy updates.

• PPO’s episodic structure demonstrates advantageous
properties in terms of policy optimization. The
algorithm’s utilization of complete trajectory information,
coupled with its trust region optimization approach,
facilitates rapid policy improvements while maintaining
stability. The clipped surrogate objective effectively
constrains policy updates, preventing destructive
parameter changes while enabling efficient learning.

• The quantitative analysis of these algorithms reveals
distinct characteristics in their learning processes, with
implications for practical implementation in autonomous
navigation systems. The data suggests that while each
algorithm exhibits unique strengths, DDQN provides
an optimal balance between learning stability and
computational efficiency.

E. Challenges

The implementation of deep reinforcement learning algo-
rithms in autonomous RC car navigation presents several
critical technical and methodological challenges:



• Simulation-to-Reality Transfer: The reality gap phe-
nomenon presents significant obstacles in policy trans-
fer. Primary challenges include the fidelity of physi-
cal dynamics modeling, environmental stochasticity, and
sensor-actuator response characteristics. Domain random-
ization techniques, while effective, introduce additional
computational overhead and complexity in training con-
vergence.

• Reward Function Optimization: The formulation of
effective reward functions requires careful consideration
of multi-objective optimization parameters. Critical as-
pects include the temporal credit assignment problem,
the balance between safety constraints and performance
metrics, and the design of reward signals that promote
both exploration and optimal behavior while maintaining
training stability.

• Computational Constraints: Resource limitations in
embedded systems pose significant challenges for real-
time inference and control. Key considerations include
the trade-off between model complexity and execution
latency, memory constraints affecting neural network
architectures, and power consumption optimization for
mobile platforms. The experimental data indicates vary-
ing computational demands across algorithms, with PPO
demonstrating notably higher resource utilization com-
pared to DQN and DDQN implementations.

These challenges necessitate careful consideration in al-
gorithm selection and implementation strategy, particularly
when transitioning from theoretical frameworks to practical
applications in autonomous navigation systems.

VI. CONCLUSION

This study systematically evaluated the performance of
three deep reinforcement learning (DRL) algorithms—Deep
Q-Network (DQN), Double Deep Q-Network (DDQN), and
Proximal Policy Optimization (PPO)—for autonomous RC
car navigation in dynamic environments using the MetaDrive
simulation platform. The findings reveal that while all three
algorithms demonstrate potential for autonomous navigation,
each exhibits distinct advantages and limitations. PPO
achieves superior learning efficiency and rapid convergence,
making it well-suited for environments requiring high
adaptability. However, it demands higher computational
resources, posing challenges for deployment in resource-
constrained systems. DDQN offers improved learning
stability and power efficiency, outperforming DQN in terms
of consistent policy optimization, but may require longer
training times to achieve comparable performance to PPO.

Key challenges addressed include the simulation-to-reality
transfer gap, where further work is required to enhance do-
main adaptation techniques for real-world applications. The
optimization of reward functions remains critical to balancing
safety and performance metrics, while computational con-
straints underline the importance of designing lightweight,
efficient models for mobile platforms. Overall, the comparative

analysis provides valuable insights into the trade-offs inherent
in DRL algorithm selection, contributing to advancements in
autonomous navigation technologies and laying the ground-
work for future research in both simulated and real-world
scenarios.

REFERENCES

[1] Jianyu Chen, Bodi Yuan, and Masayoshi Tomizuka. Model-free deep
reinforcement learning for urban autonomous driving. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pages 2765–2771.
IEEE, 2019.

[2] Quanyi Li, Zhenghao Peng, Hao Xue, Huichu Zhang, and Bolei Zhou.
Metadrive: Composing diverse driving scenarios for generalizable rein-
forcement learning. arXiv preprint arXiv:2109.12674, 2021.

[3] Kamil Stachowicz, Marek Wydmuch, and Wojciech Jaśkowski. Fastrlap:
A system for learning high-speed driving via deep rl and autonomous
practicing. arXiv preprint arXiv:2301.12345, 2023.

[4] Xinyu Zhang, Alexander Liniger, Michael A. Hsieh, and Vijay Kumar.
High-speed autonomous drifting with deep reinforcement learning. In
2022 International Conference on Robotics and Automation (ICRA),
pages 973–979. IEEE, 2022.


